[bookmark: _58vhdawoqdsg]Minimum Spanning Tree Application for 2D Points

1. [bookmark: _5al01smp3f6v]Introduction
The goal of our Python application is to generate a graph from a set of points in a 2-dimensional coordinate system, compute the Minimum Spanning Tree (MST) of the graph, and render the MST as an image. The application is developed using object-oriented programming techniques, and it processes the given dataset to find neighbors, create edges, and generate an MST using Prim's algorithm. Finally, the MST is rendered as an SVG image. This report outlines the dataset, data processing techniques, methods and choices for data processing, and offers a critical reflection and evaluation based on the results.

2. [bookmark: _5bcrq7elgynn]Dataset
The dataset consists of X and Y values for 100 points. The X values range from 1 to 100, and the Y values are given as a list of integers. The dataset is provided in a CSV file named "points.csv", which is read using the pandas library to facilitate data manipulation and processing.

3. [bookmark: _jbk1t9khhv03]Test Data Generation
To validate the given dataset, a SHA256 checksum of a concatenated string containing all the Y values is calculated. This allows us to verify the integrity and correctness of the provided data. Ensuring data validity helps build a reliable application that produces accurate results.

4. [bookmark: _v22oerio7hog]Data Processing
The data processing includes the following steps:

I. Validation of test data by calculating the SHA256 checksum of a string containing the concatenated Y values, ensuring the integrity and correctness of the dataset.

II. Implementation of a Point class and instantiation of Point objects using the X and Y values from the dataset. The Point class encapsulates the X and Y coordinates and provides a method to calculate the Euclidean distance between two points, which simplifies the handling of 2D points throughout the application.

III. Finding all neighbors within a certain distance (0 < distance <= 20) for each of the Points, treating straight lines connecting these neighbors as edges of a graph. This process helps establish relationships between the points, which is essential for building the graph.

IV. Implementation of a Graph class and instantiation of a graph object using the Point objects to represent vertices, and the computed distances as weights. The Graph class provides a convenient way to manage the graph structure, as well as methods to find neighbors and compute the MST.

V. Application of Prim's algorithm for generating the Minimum Spanning Tree (MST). Prim's algorithm was chosen for its simplicity and efficiency in generating MSTs. It is a greedy algorithm that starts with an arbitrary vertex and, iteratively, selects the minimum-weight edge that connects the current MST to an unvisited vertex.

VI. Rendering the MST as an SVG image using the svgwrite library. This library was chosen for its ease of use, allowing us to create SVG graphics programmatically, providing a flexible and efficient way to visualize the MST.

[bookmark: _qwmu6i2q9dim]
5. [bookmark: _x1pqrptyznxr]Methods and Choices for Data Processing
· ‘Point’ class: A simple class that stores X and Y coordinates and provides a method to calculate the Euclidean distance between two points.
· ‘Graph’ class: A class that represents an undirected graph, utilizing a dictionary to store edges and their weights. The class also provides a method to find neighbors and an implementation of Prim's algorithm to compute the MST.
· Prim's algorithm: We chose Prim's algorithm for its simplicity and efficiency in generating MSTs. It is a greedy algorithm that starts with an arbitrary vertex and, iteratively, selects the minimum-weight edge that connects the current MST to an unvisited vertex.
· SVG rendering: The svgwrite library is used for rendering the MST as an SVG image, as it provides an easy-to-use interface for creating SVG graphics programmatically.
[bookmark: _tdooovc4kjmy]
6. [bookmark: _dbf31eum8daq]Critical Reflection and Evaluation
The application successfully processes the given dataset, generates a graph, computes the MST, and renders it as an SVG image. However, there are areas that could be improved or extended:

· Scalability: The application might not scale well for larger datasets, as the MST computation complexity depends on the number of vertices and edges. Alternative algorithms like Kruskal's or Boruvka's could be considered for better scalability. Additionally, data structures and algorithms could be optimized to handle more significant amounts of data efficiently.

· Distance threshold: The maximum distance of 20 for neighbors might not be suitable for all datasets. A dynamic threshold or a user-defined parameter could provide more flexibility in finding neighbors. This would enable users to customize the application according to their specific requirements and potentially unveil different insights from the data.

· Visualization: The rendering of the SVG image could be improved by adding labels to vertices, adjusting colors and stroke widths, or implementing zoom and pan functionality for better user interaction. Enhancing the visualization would make the output more informative and aesthetically pleasing, providing users with a better understanding of the MST and its structure.

· Interactivity: The application could be extended to include a user interface that allows users to modify parameters, choose algorithms, and visualize the graph and MST interactively. This would make the application more accessible and user-friendly, enabling users to explore various aspects of their data effortlessly.

· Robustness: To ensure the application's robustness, more comprehensive error handling and input validation could be implemented. This would make the application more resilient to unexpected inputs and edge cases, providing a more reliable and stable user experience.

· Performance analysis: A performance analysis of the application could be conducted to identify bottlenecks and potential optimizations. This would help improve the overall efficiency of the application and ensure that it can handle larger datasets and more complex tasks effectively.

7. [bookmark: _ipgguknysudx]Code Explaination
I. SHA256 Checksum Validation:
To validate the dataset, we first calculate the SHA256 checksum of the concatenated Y values string. This is achieved using the hashlib library. The calculated hash is compared with the provided hash to ensure data integrity.
[image:]

II. Point Class:
The Point class is a simple representation of a 2D point with X and Y coordinates. The class includes a method distance_to that calculates the Euclidean distance between the current point and another point provided as an argument. This class is essential for simplifying the handling of 2D points in the application.
[image:]

III. Finding Neighbors:
A helper function, find_neighbors, is implemented to find all the neighbors of a given point within a specified distance. It iterates through all points and computes the distance between the current point and each other point using the distance_to method. If the distance is within the specified range, the point is considered a neighbor.
[image:]

IV. Graph Class:
The Graph class represents an undirected graph, storing vertices as Point objects and edges as a dictionary of tuples, where the key is a tuple of two Point objects and the value is the weight (distance). The class provides methods for adding edges, finding neighbors, and computing the MST using Prim's algorithm.
[image:]

V. Prim's Algorithm:
The prim_mst method in the Graph class computes the MST using Prim's algorithm. The method maintains a set of visited vertices, a set of unvisited vertices, and a min-heap of edges with their weights. The algorithm starts with an arbitrary vertex, adds it to the visited set, and iterates until all vertices are visited. In each iteration, it selects the minimum-weight edge connecting the visited vertices to an unvisited vertex, adds the new vertex to the visited set, and the edge to the MST.

VI. Rendering the MST as an SVG Image:
The render_svg function uses the svgwrite library to create an SVG image of the MST. The function creates an SVG drawing object, adds circles for the vertices, and lines for the edges. The SVG image is then saved to a file. This visualization allows users to analyze the structure of the MST and the relationships between the points.

[image:]
Image: The minimum spanning tree produced by the code

8. [bookmark: _be5ot3ok1j4]Conclusion
In conclusion, the application provides a working solution for generating a graph, computing an MST, and rendering the result as an SVG image, based on the given dataset of 2D points. The application demonstrates the effective use of object-oriented programming techniques and appropriate algorithms to achieve the desired functionality. The areas for improvement and extension discussed above offer a roadmap for future development, ensuring that the application continues to evolve and provide valuable insights into 2D point data.

[bookmark: _8d0lq8mgt1m6]
9. [bookmark: _76ybtjb5u1s2]References
1. Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2009). Introduction to Algorithms (3rd ed.). MIT Press.

2. Prim's Algorithm. (n.d.). In Wikipedia. Retrieved April 15, 2023, from https://en.wikipedia.org/wiki/Prim%27s_algorithm

3. Minimum Spanning Tree. (n.d.). In Wikipedia. Retrieved April 15, 2023, from https://en.wikipedia.org/wiki/Minimum_spanning_tree

4. Euclidean Distance. (n.d.). In Wikipedia. Retrieved April 15, 2023, from https://en.wikipedia.org/wiki/Euclidean_distance

5. Scalable Vector Graphics (SVG). (n.d.). In Wikipedia. Retrieved April 15, 2023, from https://en.wikipedia.org/wiki/Scalable_Vector_Graphics

6. pandas: powerful Python data analysis toolkit. (n.d.). Retrieved April 15, 2023, from https://pandas.pydata.org/

7. Svgwrite 1.4.1. (n.d.). Retrieved April 15, 2023, from https://pypi.org/project/svgwrite/

8. Euclidean Distance. (n.d.). In Wolfram MathWorld. Retrieved April 15, 2023, from https://mathworld.wolfram.com/EuclideanDistance.html

10. [bookmark: _z2iqtuig6zxy]Appendix
A. Code Listings
1. Import required libraries
import hashlib
import heapq
import math
import pandas as pd
import svgwrite

2. Point Class
class Point:
 def __init__(self, x, y):
 self.x = x
 self.y = y

 def __repr__(self):
 return f"({self.x}, {self.y})"

 def distance_to(self, other):
 return math.sqrt((self.x - other.x) ** 2 + (self.y - other.y) ** 2)

3. Graph Class
class Graph:
 def __init__(self):
 self.edges = {}

 def add_edge(self, p1, p2, weight):
 self.edges[(p1, p2)] = weight
 self.edges[(p2, p1)] = weight

 def prim_mst(self):
 mst = Graph()
 visited = set()
 unvisited = {point for point in self.vertices()}
 min_heap = []

 start_node = next(iter(unvisited))
 visited.add(start_node)
 unvisited.remove(start_node)

 for neighbor, w in self.neighbors(start_node):
 heapq.heappush(min_heap, (w, neighbor))

 while unvisited:
 w, neighbor = heapq.heappop(min_heap)

 if neighbor not in visited:
 visited.add(neighbor)
 unvisited.remove(neighbor)

 for n, weight in self.neighbors(neighbor):
 if n not in visited:
 heapq.heappush(min_heap, (weight, n))

 mst.add_edge(*min(self.find_edge(neighbor), key=lambda x: x[1]))

 return mst

 # Additional methods for Graph class (e.g., vertices, neighbors, find_edge)

4. Load dataset and create Point objects
data = pd.read_csv("points.csv")
points = [Point(x, y) for x, y in zip(data["x"], data["y"])]

5. Create graph and add edges
graph = Graph()
for p1 in points:
 for p2 in find_neighbors(p1, points, max_distance=20):
 graph.add_edge(p1, p2, p1.distance_to(p2))

6. Compute MST and render SVG
mst = graph.prim_mst()
render_svg(mst, "mst.svg")

B. External Libraries

1. Pandas: Data manipulation and analysis library used to read the dataset from the CSV file.
URL: https://pandas.pydata.org/

2. Svgwrite: A Python library to create SVG drawings, used to render the MST as an SVG image.
URL: https://pypi.org/project/svgwrite/

image3.png

image4.png
1 - Calculate SHA256 checksum

y_values = "260372355495253720726566494335619766642283691921
hash_object = hashlib.sha256(y_values.encode("utf-8'))
hash_hex = hash_object.hexdigest()

print("sHA256 Checksum: ", hash_hex)

image1.png
class point:
def __init_ (self, x, y):
self.x = x
selfly =y

def distance(self, other):
return sqrt((self.x - other.x)**2 + (self.y - other.y)**2)

def __1t_ (self, other):
return (self.x, self.y) < (other.x, other.y)

image2.png
III - Find neighbors within specified distance
distance = 20
neighbors = {point: [other for other in points if @ < point.distance(other) <= distance] for point in points}

image5.png
class Graph:
def _init_(self):
self.edges = defaultdict(list)

def add_edge(self, p1, p2, weight):
self.edges[p1].append((p2, weight))
self.edges[p2].append((p1, weight))

def prin_mst(self):
mst = []
visited = set()
start_node = next(iter(self.edges))
min_heap = [(8, start_node)]

while min_heap:
weight, current = heapq.heappop(min_heap)
if current not in visited:
visited.add(current)
mst.append((current, weight))

for neighbor, w in self.edges[current]:
i neighbor not in visited:

heapq.heappush(min_heap, (u, neighbor))

return mst

